

 ARL-TR-8284 ● JAN 2018

 US Army Research Laboratory

Semi-Automated Processing of Trajectory
Simulator Output Files for Model Evaluation

by J L Cogan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8284 ● JAN 2018

 US Army Research Laboratory

Semi-Automated Processing of Trajectory
Simulator Output Files for Model Evaluation

by J L Cogan
Computational Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2018

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

1 November 2017–12 December 2017

4. TITLE AND SUBTITLE

Semi-Automated Processing of Trajectory Simulator Output Files for Model

Evaluation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J L Cogan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

Computational Information Sciences Directorate (ATTN: RDRL-CIE)

2800 Powder Mill Road

Adelphi, MD 20783‐1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8284

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Artillery trajectory simulator programs can produce detailed output that may be tailored by the user, including parameters

displayed and sequence of presentation. Here we consider the General Trajectory (GTRAJ) program developed by the US

Armaments Research and Development Center. The GTRAJ model has been used in the evaluation of Army meteorological

systems in terms of artillery parameters such as radial miss distance and probable circular error. However, the processing of

the output was tedious and is not efficient for large numbers of GTRAJ output files. The method described in this report semi-

automates the process and greatly reduces the time and effort required. Results of several trial runs demonstrate the value of

the method for several GTRAJ output files. The programs were written in Python (version 3.5) and would require some

modification for different forms of the GTRAJ output files. However, the program described here can serve as a template for

other GTRAJ output files.

15. SUBJECT TERMS

artillery meteorology, artillery trajectory simulation, python program application, artillery meteorology statistics, artillery

meteorology accuracy

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

32

19a. NAME OF RESPONSIBLE PERSON

J L Cogan

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

301-394-2304
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Tables iv

1. Introduction 1

2. Processing GTRAJ Output 2

2.1 Program with Parameter File 4

2.2 Program with Source Names on Command Line 5

2.3 A Word on METCM Filenames 5

3. Difference Statistics from Multiple Tables 6

4. Input and Output Samples 7

5. Summary and Conclusion 11

6. References 13

Appendix A. Python 3 Code (gtout.py) 15

Appendix B. Python 3 Code (gtstats.py) 21

List of Symbols, Abbreviations, and Acronyms 25

Distribution List 26

Approved for public release; distribution is unlimited.

iv

List of Tables

Table 1 Output from the first of 24 listings within a single GTRAJ output file.
The GTRAJ output file included 3 MET data sources over 8 azimuths.
Note that in GTRAJ the radial distance (distance from gun to target) is
called range. In the output listing at the bottom, the actual range is
named E1, deflection E3, and height above the Earth’s surface E2. 8

Table 2 RMDs (data source – RAOB) computed for Lamont, Oklahoma, on
20170815 at 00 UTC for each MET data source and azimuth (upper
table), and mean and median values for each MET data source (lower
table). Azimuth is in mils and % refers to percent radial distance (aka
% range). ... 9

Table 3 Output from gtout.py for 2 sites, 2 sources of MET data, and 8
azimuths .. 10

Table 4 Output from gtstats.py, where the input file (output_tables) contained
tables for the 2 sites and 8 azimuths of Table 3 11

Approved for public release; distribution is unlimited.

1

1. Introduction

Over the past several years, the US Army Research Laboratory (ARL) has

supported the development and testing of Army artillery meteorological (MET)

systems such as the current Profiler Virtual Module (PVM) and earlier types

including the Computer, Meteorological Data–Profiler (CMD-P) and the

Meteorological Measuring Set – Profiler (MMS-P). ARL supported the acquisition

process by performing developmental tests of accuracy of the PVM and earlier

systems. The accuracy testing compared output from the PVM (and earlier the

CMD-P and MMS-P) with MET data from radiosonde observations (RAOBs) in

terms of MET variables (e.g., wind speed) and measures of artillery effectiveness

(e.g., radial miss distance [RMD]) as computed using a trajectory simulator

program, the General Trajectory (GTRAJ) program developed by the US

Armaments Research and Development Center (ARDEC). Frehlich (2006)

describes a somewhat earlier version of GTRAJ, and McCoy (2012) provides some

of the theory and practice behind it. The comparisons presented in a recent paper

by Cogan (2017) employed similar procedures, but using spreadsheets and

spreadsheet functions to produce the relevant statistics. Data from the GTRAJ

output were manually entered into the spreadsheets.

This report describes software that mostly automates the analysis of the GTRAJ

output and can lead to a major reduction in analysis time, perhaps to less than 20%

of that needed earlier. The software consists of 3 related Python programs. The first

and second programs input GTRAJ output files and either write the output from the

program as a set of 2 tables in a single file for each GTRAJ file or append the output

into a larger file for later processing. The first program takes an indicator from a

parameter file on whether or not to append the output. It also inputs the names of

the sources of MET data such as from a model or a RAOB from the same parameter

file. The second program produces the same output as the first, but takes the

information on whether or not to append output and the MET data source names

from the command line. A third program produces overall means, medians, and

standard deviations from the larger (append) file. Here the procedure for applying

the software is described, samples of input and output are presented, and the code

for the first and third programs are presented in Appendix A and B, respectively.

The second program differs only slightly from the first and is not shown, but some

differences are noted at the beginning of Appendix A.

For convenience, shorthand terms are used to identify the MET data sources for the

sample output presented in this report. WRF1 refers to MET data computed from a

Weather Research and Forecasting (WRF) model integration for the site of the

coincident RAOB, WRF2 refers to data computed from a second WRF model

Approved for public release; distribution is unlimited.

2

integration for a site approximately 30 km to the west of the RAOB site, and R

refers to data from the coincident RAOB. All 3 are contained within a single

GTRAJ output file. To demonstrate the method for more than 2 MET data sources,

additional GTRAJ output files labeled WRFn, where n >2, were produced by

manually modifying the WRF1 or WRF2 files. Those latter files served to test the

software of this report and do not represent actual atmospheric situations. The WRF

model is described in Skamarock et al. (2008), and although some changes have

been implemented (Lee et al. 2012; Reen et al. 2014), the basic algorithms and

processes remain much the same. The sources of MET data may also include other

observation systems such as for a comparison between a remote sensing system

(e.g., lidar wind profiler combined with, for example, a microwave radiometer) and

a RAOB.

2. Processing GTRAJ Output

The program that processes a single or multiple GTRAJ output files was developed

for comparisons of results from typically a first model integration (WRF1) versus

results from a coincident RAOB with results from one or more other model

integrations (e.g., WRF2, WRF3) versus RAOB results. It runs on a Linux

operating system (OS) computer, but should work for other OSs that can run Python

3 programs although some minor changes may be needed. The program processes

a GTRAJ output text file that contains results from 2 or more simulations, where

each simulation uses a computer MET message (METCM) derived from a model

integration or the coincident RAOB or other source of “truth” data. US Army FM

3-09.15 (HDA 2007) describes the METCM and provides information on its

application.

The output trajectory data are reported periodically along the projectile’s flight path

and includes the total radial distance (horizontal distance from gun to projectile),

range (horizontal distance along the aiming or gun azimuth), deflection (horizontal

distance perpendicular to range), height above ground (assuming smooth terrain

from gun to target) of the projectile, and other user selected parameters. For these

simulations the firing parameters (such as quadrant elevation, projectile weight,

muzzle velocity, etc.) remained the same for all the runs. For each METCM, the

simulated fires were at either 4 (i.e., toward the north, east, south, and west) or 8

(i.e., toward the north, northeast, east, southeast, etc.) directions of fire (azimuth of

gun), so as to have an idea of the variation with direction (azimuth) and reduce the

bias that could result from using one direction only. Consequently, each output file

consisted of 3 × 4 = 12 or 3 × 8 = 24 sets of firing data output, respectively, for

comparisons of trajectories computed using METCMs from 2 model integrations

Approved for public release; distribution is unlimited.

3

versus that from a RAOB. More or fewer azimuths, or more or fewer model

integrations, will lead to larger or smaller sets of firing data per output file.

The meteorological data sources (e.g., WRF1, WRF2) are specified via a parameter

file or as input from the command line. The former may be more convenient for

processing of numerous GTRAJ output files. The operation of the program with a

parameter file is straightforward in that the user only needs to type python3 plus

the program name and input filename, in that order. For the version using

command-line input, after the name of the program type the name of the GTRAJ

output file used as input followed by the parameter for appending or not appending

the output plus the MET data source identifiers. The entire set of MET data source

identifiers on the command line needs to be enclosed in either single (‘) or double

(“) quotes (which forms a string in Python); either type of quotes can be used, but

must be the same before and after the source names. The last source identified in

the parameter file or command line list is considered the “truth” sounding, such as

a RAOB. It is assumed there is only one “truth” sounding. Currently, the MET data

source name must appear as the first part or prefix of the name of the METCM used

for input to GTRAJ, and it must be separated from the rest of the name by an

underscore (e.g., WRF1_MHX_20170514). The MET data source identifier has to

relate to only one METCM within each GTRAJ output file. For example, one

cannot have WRF1_MHX_2017081500 and WRF1_LMN_2017081500 within the

same GTRAJ output file.

The procedure to use the program using the parameter file is shown in section 2.1

and the program code is presented in Appendix A. The command-line version of

the program presented in section 2.2 primarily differs in the Python statements that

are used to define the MET data sources. The Python program and the parameter

file (if used) are in the same directory. The GTRAJ output files used as input may

be in the same or another directory. If a separate directory is used include the file

path as part of the input filename. The output file from these programs will appear

in the same directory as the input file.

Each output set contains 2 tables, the first table has the RMDs for trajectories

computed using METCMs from each data source (e.g., WRF1) relative to those

computed using the coincident RAOB at the listed azimuths. For example, “WRF1

3200 112.4” refers to a simulation using the METCM derived from WRF1 for a

firing direction or azimuth of 3200 mils (180°) and yields a RMD (WRF1 vs. R) of

112.4 m. RMD for these simulations is defined as

 RMD = ((∆ range)2 + (∆ deflection)2)1/2, (1)

where ∆ represents the difference between the value for a data source less that for

the coincident RAOB (e.g., ∆2-R = WRF2 value – RAOB value). The RMDs are

Approved for public release; distribution is unlimited.

4

calculated in terms of meters and then converted to percent of the radial distance

computed using the METCM from the RAOB (or other “truth” sounding). Both

values are printed in the first table.

The second table in the set has the means, medians, and standard deviations of the

RMDs over all the azimuths for each MET data source. These quantities are

calculated for the RMDs both in meters and as the percentage of radial distance;

both values are printed in the second table.

2.1 Program with Parameter File

To run the program that uses a parameter file, first ensure the parameter file, named

input_sources, is in the same directory as the Python program gtout.py. The

parameter file has to have the parameter for appending or not appending the output

(a = append) followed by the identifiers of the MET data sources space-delimited

and listed on the first line. Normally, the MET data sources are listed in the order

they appear in the GTRAJ output file. For example, the line in the parameter file

may list ‘n WRF1 WRF2 R’ for not to append (i.e., a single output file), METCMs

from 2 model integrations and the coincident RAOB. They must have the same

names as the prefixes in the METCM files named in the GTRAJ output file (e.g.,

WRF1). The “truth” sounding is the last MET data source (e.g., in the previous

example R indicating RAOB is the “truth” sounding). Section 2.3 has additional

information on the selection, number, and ordering of the MET data source

identifiers.

On the command line, enter the name of the program and the input GTRAJ file.

python3 gtout.py INPUT_FILE ,

where INPUT_FILE is the name of the GTRAJ output file (input to program). The file

produced by the program has the addition of _out to the input file name for the case

of not appending and has the name output-tables for appending.

For example,

python3 gtout.py DEN_2017-09-17-00.out ,

produces an output file DEN_2017-09-17-00.out_out (not appending) or

output_tables (appending). The filenames for GTRAJ output are chosen by the

user and do not have to have the .out extension. However, the default name is

gtraj.out, and that extension is often used. The name for the aforementioned

examples could have been DEN_2017-09-17-00, DEN_2017-09-17_test, or some

other name.

Approved for public release; distribution is unlimited.

5

2.2 Program with Source Names on Command Line

The procedure for the version with entry of the MET data source names via the

command line closely follows that for the one using the parameter file (“cl”

indicates the command line version). The program reads the command-line list that

contains the append parameter and then the source names as a single string; the

source names must be enclosed in single or double quotes.

On the command line, enter the following:

python3 gtoutcl.py INPUT_FILE X ’SOURCE-1 SOURCE-2 … SOURCE-N’ ,

where INPUT_FILE is the name of the GTRAJ output file as before, X is the

append parameter (a = append and any other character [e.g., n] = do not append),

and SOURCE-1 … SOURCE-N are generic names for the sources of the MET data

in the GTRAJ output. SOURCE-N is the name of the source of the “truth” sounding

(e.g., RAOB). The output has the addition of _out to the input file name (not

appending) or the name output_files (appending) as before.

For example,

python3 gtoutcl.py DEN_2017-09-09-17-00.out n ‘WRF1 WRF2 R’,

where n indicates single file output (a = append), and WRF1, WRF2, and R indicate

METCMs that were produced from the 2 model integrations and from RAOB data.

In this example, the program will produce an output file with the same name as for

the gtout.py program without appending (DEN_2017-09-17-00.out_out). Note that

one has to enclose the source names in either double or single quotes.

2.3 A Word on METCM Filenames

The filenames for the METCMs used by the GTRAJ program from whatever source

must begin with the source identifier (e.g., WRF2) followed by an underscore (_)

and the rest of the name, usually with the site identifier followed by a string

indicating the date and time (e.g., WRF1_LMN_2017081500 for WRF integration

1 for Lamont, OK, at 00 Coordinated Universal Time [UTC] on 15 August 2017).

The last source name in the parameter file or command-line list is considered the

“truth” sounding. However, if a different order of the prefixes in the naming

convention is chosen (e.g., LMN_WRF1_2017081500), minor changes to only a

few statements should enable the programs to run properly.

If one or more of the MET data source names in the parameter file (or on the

command line) is/are not the same as in the GTRAJ output file the program will

partly run and then produce an error message (KeyError: followed by a string,

which may represent a number). That includes the situation where more sources

Approved for public release; distribution is unlimited.

6

appear in the parameter file or command line than are in the GTRAJ output file

(i.e., produces a KeyError error message). If the order that the MET data source

names appear is different, the program will run, but the order in which the output

data are listed in the output tables will be different. For example, WRF1, R, WRF2

as sources in that order will lead to comparisons of WRF1 to WRF2 and R to

WRF2, treating data from WRF2 as the “truth” values. If the parameter file or the

command line has fewer data sources than the GTRAJ file, then the program will

run normally and produce output for the sources listed in the parameter file or

command line. However, at least 2 MET data sources, one of which is considered

the “truth” source, are required since differences are computed.

The ability of the program to produce output whatever the order of the MET data

source names allows additional comparisons to be made. For example, one may

want to compare results from one type of model output (e.g., WRF) with another

type of model output (e.g., GFS). Also, one may want to investigate the changes in

RMD when one of the other sources is used as the “truth” sounding. Another

potential comparison could involve use of different azimuths or number of

azimuths. For example, a comparison of the use of 4 azimuths versus 8 or 16

azimuths on mean or median values for a given site. Another may consider the

effect of one set of directions versus another (e.g., north and west vs. south and

east).

3. Difference Statistics from Multiple Tables

A third program, gtstats.py, is used to compute basic differences statistics for the

RMDs from all tables of the individual RMDs in the output_tables file. Means,

medians, and standard deviations of the RMDs for each MET data source over all

azimuths from all tables of individual RMDs for each site are computed from the

respective values. An individual RMD refers to an RMD derived from a single data

source relative to the coincident RAOB (or other “truth” sounding) calculated for

one site at one time at one azimuth (e.g., an RMD for WRF1 vs. RAOB computed

for MHX [Newport, VA] at 2017082300 for an azimuth of 1600 mils). The MET

data sources are defined from the identifiers in the first line of output_tables. The

procedure for running this program, gtstats.py is as follows:

python3 gtstats.py INPUT_FILE,

where INPUT_FILE is the output file from gtout.py or gtoutcl.py, that is,

output_tables if using the default name.

For example,

python3 gtstats.py output_tables,

Approved for public release; distribution is unlimited.

7

where the names of the MET data sources are extracted from the first line of

output_tables.

The output filename is RMD_statistics_out, which is the default. That may be

changed in the program by modifying one statement.

If the MET data sources in output_tables are not the same in the tables from

consecutive program runs after the first one, then the program will ignore those not

listed in the first line of the first run. Therefore, it is important to ensure the first

line of the first run (top header line of the first set of 2 tables) is correct. If the

azimuths are not the same, then the program will run, but the results may not be

valid. The program will run for one or more azimuths for each data source, but there

must be at least 3 samples (individual RMDs) for computation of standard

deviation. When there are fewer than 3 samples for a data source, the program will

print a message to the screen before ending normally (NO STANDARD

DEVIATION COMPUTED FOR DATA LIST N - LESS THAN 3 SAMPLES !!,

where N is the number of the data source [e.g., 0 or 1 = WRF1 or WRF2,

respectively]). The values for standard deviation will be listed as -999, the missing

data indicator. Appendix B contains details on this program.

4. Input and Output Samples

The type of input file from GTRAJ is the same for gtout.py and gtoutcl.py (i.e., the

same input file may be used for both programs). Table 1 presents the first section

of a sample GTRAJ output file. Only the listing for 1 of 8 azimuths for 1 of 3 MET

data sources are shown here (24 listings altogether) given the size of the file and

that subsequent sets have the same format and parameters. The output contains

trajectory data, intermediate values (e.g., wind velocity in terms of the components

in the range and deflection directions), values of many firing and other parameters

most of which were not changed from their default values, and so on. The output

shown here has trajectory values (e.g., range and deflection) every 10 s. The user

can change the frequency of trajectory output and add or remove output of some

variables (e.g., speed of the projectile in terms of Mach number) when executing

the GTRAJ program.

Approved for public release; distribution is unlimited.

8

Table 1 Output from the first of 24 listings within a single GTRAJ output file. The GTRAJ

output file included 3 MET data sources over 8 azimuths. Note that in GTRAJ the radial

distance (distance from gun to target) is called range. In the output listing at the bottom, the

actual range is named E1, deflection E3, and height above the Earth’s surface E2.

The output files from gtout.py or gtoutcl.py are the same. Table 2 shows the output

tables for the GTRAJ file used for Table 1. The upper table has individual RMDs

in terms of meters and percent radial distance (named range in GTRAJ) for each

Approved for public release; distribution is unlimited.

9

MET data source or system and azimuth (mils). The lower table has the mean and

median values for each MET data source in terms of meters and percent radial

distance. Although percent range is the common terminology, in these simulations

it is actually percent radial distance. The RMD in m is divided by the radial distance

computed for the RAOB to obtain the percent radial distance.

Table 2 RMDs (data source – RAOB) computed for Lamont, Oklahoma, on 20170815 at

00 UTC for each MET data source and azimuth (upper table), and mean and median values

for each MET data source (lower table). Azimuth is in mils and % refers to percent radial

distance (aka % range).

RMDs for WRF1 and WRF2 less R

 for site and date/time: LMN_2017081500

System Azimuth RMD (m) RMD (%)

WRF1 0.0 44.7 0.192

WRF2 0.0 26.6 0.114

WRF1 800.0 48.9 0.207

WRF2 800.0 38.0 0.161

WRF1 1600.0 34.7 0.146

WRF2 1600.0 35.2 0.148

WRF1 2400.0 10.4 0.044

WRF2 2400.0 17.9 0.076

WRF1 3200.0 19.3 0.083

WRF2 3200.0 6.7 0.029

WRF1 4000.0 25.4 0.111

WRF2 4000.0 19.9 0.087

WRF1 4800.0 10.6 0.047

WRF2 4800.0 14.8 0.065

WRF1 5400.0 14.0 0.061

WRF2 5400.0 1.3 0.006

System Mean RMD (m) Mean RMD (%)

WRF1_mean_RMD 26.02 0.111

WRF2_mean_RMD 20.06 0.086

WRF1_median_RMD 22.39 0.097

WRF2_median_RMD 18.90 0.081

Table 3 shows the output for 2 instances of gtout.py (or gtoutcl.py) where the set

of 2 tables from each program execution are appended. There is no preset limit to

the number of table sets that can be appended. However, they should relate to the

same MET data sources and have the same azimuths.

Approved for public release; distribution is unlimited.

10

Table 3 Output from gtout.py for 2 sites, 2 sources of MET data, and 8 azimuths

RMDs for WRF1 and WRF2 less R

 for site and date/time: ETGB_2016-02-07-00

System Azimuth RMD (m) RMD (%)

WRF1 0.0 149.0 0.638

WRF2 0.0 198.3 0.849

WRF1 800.0 167.6 0.715

WRF2 800.0 122.5 0.523

WRF1 1600.0 267.5 1.170

WRF2 1600.0 234.7 1.027

WRF1 2400.0 262.9 1.195

WRF2 2400.0 274.5 1.248

WRF1 3200.0 166.1 0.779

WRF2 3200.0 195.4 0.916

WRF1 4000.0 144.1 0.677

WRF2 4000.0 122.5 0.576

WRF1 4800.0 230.9 1.056

WRF2 4800.0 218.9 1.002

WRF1 5400.0 248.5 1.104

WRF2 5400.0 272.3 1.210

System Mean RMD (m) Mean RMD (%)

WRF1_mean_RMD 204.57 0.917

WRF2_mean_RMD 204.89 0.919

WRF1_median_RMD 199.24 0.918

WRF2_median_RMD 208.62 0.959

RMDs for WRF1 and WRF2 less R

 for site and date/time: LMN_2017081500

System Azimuth RMD (m) RMD (%)

WRF1 0.0 44.7 0.192

WRF2 0.0 26.6 0.114

WRF1 800.0 48.9 0.207

WRF2 800.0 38.0 0.161

WRF1 1600.0 34.7 0.146

WRF2 1600.0 35.2 0.148

WRF1 2400.0 10.4 0.044

WRF2 2400.0 17.9 0.076

WRF1 3200.0 19.3 0.083

WRF2 3200.0 6.7 0.029

WRF1 4000.0 25.4 0.111

WRF2 4000.0 19.9 0.087

WRF1 4800.0 10.6 0.047

WRF2 4800.0 14.8 0.065

WRF1 5400.0 14.0 0.061

WRF2 5400.0 1.3 0.006

System Mean RMD (m) Mean RMD (%)

WRF1_mean_RMD 26.02 0.111

WRF2_mean_RMD 20.06 0.086

WRF1_median_RMD 22.39 0.097

WRF2_median_RMD 18.90 0.081

The output from the program, gtstats.py, that computes overall means, medians,

and standard deviations over all the RMDs for each source of MET data (e.g.,

WRF1) obtains input from the file output_tables (if the default name is used). As

Approved for public release; distribution is unlimited.

11

noted previously, the names of the MET data sources are extracted from the first

line of the input file. Table 4 presents a sample of output from the gtstats.py

program where the input file (output_tables) has the 2 sites (ETGB and LMN) and

8 azimuths of Table 3.

Table 4 Output from gtstats.py, where the input file (output_tables) contained tables for

the 2 sites and 8 azimuths of Table 3

Means, medians, and standard deviations of 16 individual RMDs

 Means

 Data Source (m) (%Range)

 WRF1 115.29 0.514

 WRF2 112.47 0.502

 Medians

 Data Source (m) (%Range)

 WRF1 96.50 0.422

 WRF2 80.25 0.342

 Std Deviations

 Data Source (m) (%Range)

 WRF1 99.58 0.448

 WRF2 103.92 0.468

5. Summary and Conclusion

This report presented short descriptions of 2 Python 3 programs that extract

trajectory information and certain parameters such as site and azimuth from GTRAJ

output files and create tables of RMD by source of MET data and azimuth as well

as statistics for each source over all azimuths. The first obtains the names of the

sources of MET data from a parameter file, and the second takes the names of the

MET data sources from the command line. By setting one parameter in the

parameter file or the command line, each program can append the output from

processing 2 or more GTRAJ output files to a single file rather than one file for

each GTRAJ output file processed. For many applications, use of the parameter file

version could help reduce time and effort, and reduce the opportunity for incorrect

entries (e.g., typos on the command line). The third program described in this report

computes the mean, median, and standard deviation for each source of MET data

over all the azimuths and sites.

An important consideration is the greatly decreased time to process the GTRAJ

output file data. Based on some sample runs, less than 20% of the time is needed

compared with using spreadsheets for the calculation of the statistics. However,

care must be taken to avoid processing a GTRAJ output file more than once, thereby

creating duplicate tables in the file containing the appended data. Another

Approved for public release; distribution is unlimited.

12

consideration concerns verifying that the azimuths are the same for all tables in the

file with the appended data. If not the same, the program for the overall statistics

will run, but the results could be misleading.

Currently the processing assumes the GTRAJ file contains values for one or more

sources of MET data that will be compared with values from a “truth” source. The

sources of MET data (as for this report) may be numerical weather prediction

models at any scale, global to microscale. However, the sources also may include

observation systems. The “truth” source of MET data usually is a coincident

RAOB, but also could be another source of a sounding (e.g., radar or lidar wind

profiler combined with a microwave radiometer). The programs described herein

provide a means to process GTRAJ output files far more rapidly while reducing the

chance of some types of data entry errors. However, GTRAJ output having, for

example, a different ordering of the trajectory output columns or other related

changes would require modifications to the programs that should not require

extensive effort. Nevertheless, the programs of this report can serve as templates

for processing other variants of the GTRAJ output files or output files from other

trajectory simulator programs.

Approved for public release; distribution is unlimited.

13

6. References

Cogan J. Model evaluation using ballistic trajectories and preliminary mesoscale

model accuracies with age of global model initialization data. Meteorol Appl.

2017. doi:10.1002/met.1684.

Frehlich R, Sharman R, Clough C, Padovani M, Fling K, Boughers W, Walton,

WS. Effects of Atmospheric Turbulence on Ballistic Testing. J Appl Meteo

Climato. 2006;47:1539–1549.

Lee JA, Kolczynski WC, McCandless TC, Haupt SE. An objective methodology

for configuring and down-selecting an NWP ensemble for low-level wind

prediction. Mon Wea Rev. 2012;140:2270–2286.

McCoy RL. Modern exterior ballistics: the launch and flight dynamics of

symmetric projectiles. Atglen (PA): Schiffer Publishing Ltd.; 2012. p. 328.

ISBN: 978-0-7643-3825-0. www.schifferbooks.com.

Reen BP, Stauffer DR, Davis KJ. Land-surface heterogeneity effects in the

planetary boundary layer. Boundary-Layer Meteorology. 2014;150:1–31.

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barke DM, Duda MG, Huang XY,

Wang W, Powers JG. A description of the advanced research WRF version 3.

Boulder (CO): National Center for Atmospheric Sciences (US); 2008. Report

No.: NCAR/TN-475+STR.

[HDA] Headquarters, Department of the Army. Artillery meteorology. Washington

(DC) Headquarters, Department of the Army; 2007. Field Manual No.: FM 3-

09.15. p. 270.

Approved for public release; distribution is unlimited.

14

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

15

Appendix A. Python 3 Code (gtout.py)

Approved for public release; distribution is unlimited.

16

This Appendix has the Python 3 code (gtout.py) for extraction of relevant General

Trajectory (GTRAJ) simulation values from a GTRAJ output file and computation

of mean, median, and standard deviation values for 2 or more sources of computer

meteorological message (METCM) data over a set of several azimuths. The

parameter on whether or not to append the output (i.e., a = append) and the data

sources (e.g., WRF1) are read from a parameter file with the append parameter as

the first item in a line that includes the METCM data sources. For the command-

line version (gtoutcl.py), the append parameter follows the input filename, which

in turn is followed by a single string that contains all the sources of METCM data.

#!/bin/env python3

import re
import sys
from collections import defaultdict
import string
import statistics
import os
import ntpath

#NOTE: sys.argv[0] is the program (e.g., gtout.py).
with open('input_sources', "r") as p:
 data_sources = p.readline() #Reads one line that has the 3 data sources (e.g., GFS).
 source_list = data_sources.split()
 append_or_not = source_list[0] #Read first item in list: the append or not indicator (a for
append).
 del source_list[0]
 source_len = len(source_list)

with open(sys.argv[1], "r") as f:
 input_data = f.readlines() #Everything read in.

if append_or_not == 'a':
 output_file = 'output_tables'
else:
 output_file = sys.argv[1] + "_out"
print('\nReading from file: ', sys.argv[1], "\n\n")

#Prepare variable names.

dataval_list = [] # Set up empty list for data values.
difval_list = [] # Set up empty list for difference values.
RMDvalue = [] # Empty lists for RMD.
RMDpctvalue = [] # Empty list for RMD %.

for n in range(0, source_len):
 dataval_list.append('data_val_v'+str(n))
 dataval_list[n] = defaultdict(dict)
 difval_list.append('dif_v'+str(n+1)+'-v'+str(source_len))

Approved for public release; distribution is unlimited.

17

 difval_list[n] = defaultdict(dict)
 difval_list.append('dif_v'+str(n+1)+'-v'+str(source_len))
 difval_list[n] = defaultdict(dict)
 RMDvalue.append('RMD_v'+str(n+1)+'-v'+str(source_len))
 RMDvalue[n] = defaultdict(dict)
 RMDpctvalue.append('RMDpct_v'+str(n+1)+'-v'+str(source_len))
 RMDpctvalue[n] = defaultdict(dict)

Set up a set and an empty list for azimuths.
az_vals = set()
az_values = []

#Define the previous line (any string should work).
prevline = 'first next line'

for currentline in input_data:

Find the azimuth before reading data lines.
 match = re.search('DEG F', prevline)
 if match:
 data_list = currentline.split()
 azimuthval = data_list[2]
 azimuth = float(azimuthval)
 azint = int(azimuth)
 azstr = str(int(azimuth))
 az_vals.add(azimuth)
 az_values.append(azimuth)

Find site and type of data (e.g., range), and read in data.

 match = re.search('MET FILE:', currentline)
 if match:
 metfile = ntpath.basename(currentline)
 sys_list = re.split("_", metfile)
 sys = sys_list[0]
 site = sys_list[1]
 site_datetime = sys_list[1] + "_" + sys_list[2]
 for k in range(0, source_len):
 if sys == source_list[k]: # k is set to the source's index number in source_list.
 break
 site_and_az = site + "_" + azstr

 match = re.search('END OF Data', currentline)
 if match:
 data_list = prevline.split()
 dataval_list[k]['radial_dist'][str(int(azimuth))] = data_list[1]
 dataval_list[k]['range'][str(int(azimuth))] = data_list[2]
 dataval_list[k]['deflection'][str(int(azimuth))] = data_list[3]
 else:
 prevline = currentline

sorted_azvals = sorted(az_vals) # Sort on azimuths.

Approved for public release; distribution is unlimited.

18

Compute difference values.

Create empty lists for the various statistics for RMD in m and % of radial distance.
sum_RMD_list = []
sum_RMDpct_list = []
mean_RMD_list = []
mean_RMDpct_list = []
median_RMD_list = []
median_RMDpct_list = []

for n in range(0, source_len-1):
 RMD_list = []
 RMDpct_list = []
 for azim in sorted_azvals:
 radial_dist_dif = float(dataval_list[n]['radial_dist'][str(int(azim))]) -
float(dataval_list[source_len-1]['radial_dist'][str(int(azim))])
 range_dif = float(dataval_list[n]['range'][str(int(azim))]) - float(dataval_list[source_len-
1]['range'][str(int(azim))])
 deflection_dif = float(dataval_list[n]['deflection'][str(int(azim))]) -
float(dataval_list[source_len-1]['deflection'][str(int(azim))])
 RMDvalue[n][str(int(azim))] = (range_dif*range_dif + deflection_dif*deflection_dif)**0.5
 RMDpctvalue[n][str(int(azim))] = float(RMDvalue[n][str(int(azim))]) /
float(dataval_list[source_len-1]['radial_dist'][str(int(azim))]) * 100
 RMD_list.append(RMDvalue[n][str(int(azim))])
 RMDpct_list.append(RMDpctvalue[n][str(int(azim))])

Mean and median values for all azimuths for each input source.
 mean_RMD = statistics.mean(RMD_list)
 mean_RMDpct = statistics.mean(RMDpct_list)
 median_RMD = statistics.median(RMD_list)
 median_RMDpct = statistics.median(RMDpct_list)
 mean_RMD_list.append(mean_RMD)
 median_RMD_list.append(median_RMD)
 mean_RMDpct_list.append(mean_RMDpct)
 median_RMDpct_list.append(median_RMDpct)

#OUTPUT SECTION: output generated here although some output strings composed earlier in
program.

if append_or_not == 'a':
 x = 'a'
else:
 x = 'w'
with open(output_file, x) as fo:
 print('Writing to file: ', output_file, "\n\n")
 title_string = 'RMDs for '
 for n in range(0, source_len-1):
 if(n < source_len-2):
 title_string = title_string + source_list[n] + ' and '
 else:
 title_string = title_string + source_list[n]
 title_string = title_string + ' less ' + source_list[source_len-1]

Approved for public release; distribution is unlimited.

19

 header_string='{0:42s}\n{1:19s}{2:5s}\n'.format(title_string,' for site and date/time: ',
site_datetime)
 fo.write(header_string)
 header_string='\n{0:43s}\n'.format('System Azimuth RMD (m) RMD (%)')
 fo.write(header_string)

 for azim in sorted_azvals:
 for n in range(0, source_len-1):
 rmd_string = '{0:8s} {1:7.1f} {2:8.1f} {3:8.3f}\n'.format(source_list[n], float(azim),
float(RMDvalue[n][str(int(azim))]), float(RMDpctvalue[n][str(int(azim))]))
 fo.write(rmd_string)

 header_string='\n{0:43s}\n'.format('System Mean RMD (m) Mean RMD (%)')
 fo.write(header_string)

 for n in range(0, source_len-1):
 mean_string = '{0:16s} {1:8.2f} {2:8.3f}\n'.format((source_list[n]+'_mean_RMD'),
float(mean_RMD_list[n]), float(mean_RMDpct_list[n]))
 fo.write(mean_string)
 for n in range(0, source_len-1):
 median_string = '{0:16s} {1:8.2f} {2:8.3f}\n'.format((source_list[n]+'_median_RMD'),
float(median_RMD_list[n]), float(median_RMDpct_list[n]))
 fo.write(median_string)
 if x == 'a':
 fo.write('\n\n')

Approved for public release; distribution is unlimited.

20

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

21

Appendix B. Python 3 Code (gtstats.py)

Approved for public release; distribution is unlimited.

22

This appendix has the Python 3 code (gtstats.py) for computation of overall means,

medians, and standard deviations of all radial miss distances (RMDs) for each

source of meteorological (MET) data. The identifiers of the MET data sources (e.g.,

WRF1) are read from the first line of the input file (e.g., output_tables).

#!/bin/env python3

import re
import sys
from collections import defaultdict
import string
import statistics

#NOTE: sys.argv[0] is the program (e.g., gtstats.py).
with open(sys.argv[1], "r") as g:
 first_line = g.readline() #Only read first line.
 input_data = g.readlines() #All other lines read in.

match = re.search('RMDs for', first_line)
if match:
 first_list = first_line.split()
 length_firstlist = len(first_list)

output_file = 'RMD_statistics_out'
print('\nReading from file: ', sys.argv[1], "\n")

source_list = []
for n in range(2, length_firstlist, 2):
 source_list.append(first_list[n])

variable_val = defaultdict(dict)
variable_pctval = defaultdict(dict)
site_str = defaultdict(dict)

var_list = []
length_list = []
length_pctlist = []
var_mean_list = []
varpct_mean_list = []
var_median_list = []
varpct_median_list = []
var_stdev_list = []
varpct_stdev_list = []

Fill lists with values from input file and compute various statistics.

prevline = "prev line"

for n in range(0, len(source_list)-1):
 variable_datalist = []
 variable_pctlist = []

Approved for public release; distribution is unlimited.

23

 for currentline in input_data:
 match = re.search('Azimuth', prevline)
 site_str[n] = source_list[n] + ' '
 #print('site_str[n] ', site_str[n])
 match = re.search(site_str[n], currentline)
 if match:
 var_list = currentline.split()
 varlist_len = len(var_list)
 variable_val[site_str[n]] = float(var_list[2])
 variable_pctval[site_str[n]] = float(var_list[3])
 variable_datalist.append(variable_val[site_str[n]])
 length_list.append(len(variable_datalist))
 variable_pctlist.append(variable_pctval[site_str[n]])
 length_pctlist.append(len(variable_pctlist))
 #Compute various statistics.
 var_mean = statistics.mean(variable_datalist)
 varpct_mean = statistics.mean(variable_pctlist)
 var_median = statistics.median(variable_datalist)
 varpct_median = statistics.median(variable_pctlist)
 if(len(variable_datalist) > 2):
 var_stdev = statistics.stdev(variable_datalist)
 varpct_stdev = statistics.stdev(variable_pctlist)
 else:
 var_stdev = -999
 varpct_stdev = -999
 no_stdev_string = 'NO STANDARD DEVIATION COMPUTED FOR DATA LIST ' + str(n) + ' - LESS
THAN 3 SAMPLES !!'
 print(no_stdev_string) # Since n starts at 0 it's the first data list.

 #Append statistical values to respective lists.
 var_mean_list.append(var_mean)
 varpct_mean_list.append(varpct_mean)
 var_median_list.append(var_median)
 varpct_median_list.append(varpct_median)
 var_stdev_list.append(var_stdev)
 varpct_stdev_list.append(varpct_stdev)

 prevline=currentline

#Check for equal number of items in data lists.
for n in range(0, len(source_list)-1):
 if length_list[n] != length_pctlist[n]:
 print("List length mismatch!\n")
 print("variable_datalist = ", len(length_list), " variable_pctlist = ", len(length_pctlist))

Output section: mean and median values.

with open(output_file, "w") as fo:
 print('Writing to file: ', output_file, "\n")
 header_string = 'Means, medians, and standard deviations of ' + str(len(variable_datalist)) + '
individual RMDs\n'
 fo.write(header_string)

Approved for public release; distribution is unlimited.

24

 header_string = '\n Means\n Data Source (m) (%Range)\n'
 fo.write(header_string)
 for k in range(0, len(source_list)-1):
 data_string = ' {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_mean_list[k]),
float(varpct_mean_list[k]))
 fo.write(data_string)
 header_string = '\n Medians\n Data Source (m) (%Range)\n'
 fo.write(header_string)
 for k in range(0, len(source_list)-1):
 data_string = ' {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_median_list[k]),
float(varpct_median_list[k]))
 fo.write(data_string)
 header_string = '\n Std Deviations\n Data Source (m) (%Range)\n'
 fo.write(header_string)
 for k in range(0, len(source_list)-1):
 data_string = ' {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_stdev_list[k]),
float(varpct_stdev_list[k]))
 fo.write(data_string)

Approved for public release; distribution is unlimited.

25

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

ARDEC US Armaments Research and Development Center

CMD-P Computer, Meteorological Data–Profiler

GTRAJ General Trajectory

MET meteorological

METCM computer MET message

MMS-P Meteorological Measuring Set – Profiler

PVM Profiler Virtual Module

RAOB radiosonde observation

RMD radial miss distance

WRF Weather Research and Forecasting

Approved for public release; distribution is unlimited.

26

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIR ARL

 (PDF) IMAL HRA

 RECORDS MGMT

 RDRL DCL

 TECH LIB

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 1 ARL

 (PDF) RDRL CIE

 J L COGAN

